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A number of results is presented In Cl] Indicating the regions of validity 
and effective application of approximate theories and methods for fhb analy- 
sis of transient dynamic deformations of plates. In this paper additional 
Information 1s given on the boundary between the regions of effectlve,appll- 
cablllty of two methods of integrating the equations of a Tlmoshenko type 
theory for the title problem. Conclusions are presented concern1 

3 
the accu- 

racy of these methods for the various quantities which are compute . 

1. The problem Is one of transient stress wave8 In a plate. The defor- 
mations, which will depend on one coordinate of the middle surface of the 
plate, are caused by the action of a load applied along some straight line 
or In a small region of the surface of the plate. Under the assumption that 
the object of the study consists In determining the aspects of the wave 
motion which affect the magnitude of the amplitudes most strongly, rough 
boundaries were determined In [l] for the regions of validity and effective 
appllcablllty of approximate method8 of Integration of the equations of the 
linear theory of elasticity. 

In particular, It was established that after the Initial front has tra- 
veled a distance equal to several plate thicknesses, it 18 permissible to 
replace the equations of the theory of elasticity by the equations’ of a 
theory of Tlmoshenko type In the region behind the nominal “front” of the 
Raylelgh surface waves, and in certain cases also In a small region ahead 
of that front (the Immediate vicinity of the position of the applied load 
may be an exceDtlon). The region of validity for application of a theory 
of-Tlmoshenko type includes t6e region of ap$lcabli~ty of the Klrchhoff- 
theory, but 18 considerably broader than the latter cl and 21. This region 
1s ch&acterlzed by large hisplacements and frequently Is of-greatest l&e- 
rest In the solution of particular problems. The situation Is similar in 
the case of axlsvrrnetrlc Droblems of anal~sls of crllndrlcal and SDherlcal 
shells. Therefore, It Is- Important to have avalli’ble an effective- system 
of methods of Integration of the equations of a theory of Timoehenko type. 
To develop such a theory, Information la needed on the accuracy and effec- 
tiveness of the Computational schemeb which have been proposed (see [33). 

We shall examine a 8ystem consisting of the following approximate methods 
of Integration of the equation of a theory of Tlmoshenko type: A - the com- 
putation of the contour Integrals for the inversion of the Laplaae transforms 
by the method of steepest-descents, which provides an asymptotic approxima- 
tion for the solution for time t - 0~ at point.8 sufficiently tar from the 
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fronts; R - an aeymptotlc expansion near the front8 based on the expanelon 
of the Laplaae trannforme In negative Integral powers of 8 (where s is 
the variable of the Laplace trmefoxm); C - an Improved variant of the 
finite-dlfferenae mthod In which, with aid of B , partial solutions Which 
lnalude the dlscontlnuftles of the unlakown quantities are separated out, end 
the finite-dlfferenae method Is applied to compute only that part of the 
solution which is contlnuoua along with the first and second derivatlvea 
occur+ng in the computations. 

Methods A and B were first introduced In cs for the analyaia of a 
beam; method C wae proposed and used In 15 and ] for the analysis of 
plates and a epherlcal shell. 

Agreement of the resultL ln methods 8 and C is guaranteed automatically 
In the regions near the fronts. However, comparison of the result& of metho& 
A and C Is of Interest for two realone. Flretly, the effectiveness of the 
system of methods of lntegratlon A, 8, C depends gre8’tly on the value of 
time t I t, at which we swltah from method A to method C . For In the 
analysis of an ln~inlte or semi-infinite body (I.e. before reflection of 
wavee from the supports) the amount of oalaulatlon In method C InareaseU 
proportionally to t, a* while for a finite body method A has practical 
value only provided that t, 18 muah roller thus the time of tren8lt of the 
elaatlc wavee aarona a aharaoterlstla dimension of the middle eu--faoe of the 
plate. Secondly, the applloatlon of the l eyniptotlo aolutlon of method A 
for t - m deserves attention l e a mean&b of verifying the rellablllty of 
the finite-difference method 0 , whlah har been only reaently lntroduoed 
C5 and 63. 

The coIllparlaon6, C 11. of dieDlaoen#ents aoawuted by methods A and C 
for a seml~inflnlt& plate loaded by a unlformiy dlrt%lbuted 8uddenly applied 
edge moment, showed that tb rerultr agree fairly ml1 onl 

I 
after the elastla 

waves have traversed a dlatanoe equal to never81 down p ate thloknesrer, 
and from a practiaal point of view dld not provide any lnformatlon on the 
reliability of method B . The plan dl.menalona of later are often of the 
order of a few dozen plate thloknesees (or lees). ke refore, the rerultr 
of 111 which have been cited Mart doubt on the praOtlOa1 Value of mthod A, 
not only for the Integration of equatlone of a theory of Tlmoshenko type, 
but also for Integration of the equations of elaatlolty, as aarr,led out, 
for example, In [ 21. 

It is ahown below that aomparlson of aurvee of bendlng moment 1 and 

%%etiod 
computed by methodn A and C give muoh more frvorable results 

A anC allow one to aonolude that method 0 lr reliable. 

Fig. 1 
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We shall present a mathematical statement of the problem and also explain 
the notation In Flg.1. DetaIled descrl tions of methods A and C are 
omitted, Inasmuch as they are given In P 2 and 51, respectively. 

0. Let E be the modulus of elasticity, v be Poisson’s ratio, p be 
the density of the material, 2h the thickness of the plate; c, and CT 
are the velocities of propagation of the first and second fronts In a theory 
of Tlmoshenko type, k a Is the shear coefficient, 7 the dimensionless 
time, t the dlmenslo;fless longitudinal coordinate (divided by h ), W is 
the dimensionless average normal displacement (divided by h ), 1 Is the 
angle of rotation, M and 0 are the bending moment and shear, a ,a 
differentiation operators with respect to 5 and 7 , H(T) Is the $e&?l%ie 
unit step function, and lE and IT are the dimensionless flnlte-dlfference 
grid spacings. We have 

EhZ Eh 
M=l$-YMO’ Q=i_tvQ' 

2 
M”=-3(1--v)a41C’l Q” = $3 (a,w - $) (2.3) 

The equations of motion of the Tlmoshenko type theory are expressed In 
the form 

(a42 - a721 w -aa,q=o, 3agw + (k-zaS2-ar2 - 3) 1~) = 0 (2.4) 

We shall examine the outward going stress waves In an Infinite plate 
caused by a suddenly applied edge moment which Is uniformly distributed 
along the edge 5 = 0 . We apply zero Initial conditions; the boundary 
conditions are 

M" (0, r)= &H(T), W(0, z)=O, C=const (2.5) 

and the numerical coefficients are v = 0.3, k,” = 0.860, C = 1. 

3. If the Laplace transform Is defined by Equations 
03 a+im 

s F (r, Z) eSsrdr = FL (4, s), F(c, 2)=& $ FL(tr s)eSrds (3.1) 
0 a-i03 

then the transform of the solution of the problem under study Is as follows: 

-h$ 
qL=C fJ B,je 

j=1 
(3.2) 

where 

B 
(-1)j (-I)$2 - "j") 

Wj zzz - s (Al2 - At’) ’ B6j= Shj (hla-ha2) 

(3.3) 

Ij z (f [(I + k’) f (1-k’) (1 -e27 

vz (i = 1, 2) (3.4) 

In order to compute the 1, from Equation (3’.4), thzLslgns must be chosen 
so that Re X,> 0 for Re 8 > 0 . Expressions for M and Q OL are easily 
obtained from (2.3), (3.2) and (3.3). 

The expressions (3.2) for the transforms cannot be Inverted exactly. How- 
an asymptotic approxlmatlon for 

eVhrLthod of steepest descents 
can easily be constructed by 

(method7A-)mby using the saddle points on 
the imaginary axis 8 - tm (where u Is a real quantity). For each partl- 
cular ray S/T - r - const C 1 In the 7 , s plane there exist two pairs 
of saddle points located symmetrically with respect to the point 8-0. 
The calculation8 were performed using the formulas for the fYrst approxlma- 
tlon In the method of steepest descents and the additional numerical lnfor- 



matlon given in [2]. The results for IV , No and 4" on the ray k,r = 0.7 
are shown In Fig.1 by solid lines. We remark that consideration was also 
given to other rays which belong to that part of the region of applicability 
of a theory of Tlmoahenko type where application of the Klrchhoff theory IS 
not justlf led. 

4. Tn order to carry out method C , studies were first made to find the 
frontal dlscontlnultles. The following partial solutions which contain the 
the frontal dlacontlnultles were found by applying method B (I.e. by ex an- 
ding the expressions for Bwj, Bij, $ In negative integral powers of s P 

(4.1) . . 

W,= (7 - W2 
2 (1 _ k2) fi (t - W - 2(1 q) H (t - 4)] c. I#,, = ‘+ H (z - kt) C 

The complete solution was constructed In the form 

w= w,+ WI, 1c1 = $0 -t- $1 (4.2) 

In which the functions WI, $1 which are continuous together with their first 
and second derivatives, were calculated by the finite-difference method In 
the T , 5 plane. At the Internal points of the region 0 < e < .Fk-l, with 
the exception of the first points benlnd the front E = zk-I, the quantities 
MI, t1 were calculated from the Inhomogeneous equations obtained from (2.4) 
by the substitution of Equation (4.2). At the edge !J I 0 , II’, and )I were 
determined on the basis of the conditions (2.5), and on the front E = Tk-1 
and at the first points behind this front by the frontal conditions 

WI = $1 = 0, a,WI=a,$l=O for E=Tk-’ (4.3) 

The dlmenslonlese grid spacings were taken as EE = 0, 1, I, = ll,kl, In the 
calculations. 

With the aid of Equation (2.3) My0 and O’were found from h’ and I) . 
The results of the analysis are shown In Fig.1 by dashed lines. 

5. The results of the calculations show (see Flg.1) that the M* and 4’ 
curves computed according to methods A and C agree after the elastic 
waves travel a distance equal to several plate thicknesses, the agreement 
improving as 7 Increases. Close agreement can be expected for W only 
for much larger values of 7 . 

Analysis of these results permit us to draw the following general conclu- 
slons. 

1) The lm roved variant of the finite-difference method that was proposed 
In [ 5 and 61 P Method C) Is reliable. 

2) Method A (use of the formulas of the first approximation In the method 
of steepest descents to evaluate the contour Integrals of the formal aolu- 
tlon) has quite different regions of appllcablllty for different computed 
quantltles. 

3) The great effectiveness of method A for the calculation of No and 
4” compared to Its effectiveness for finding W Is not peculiar to just the 
problem studied. The reson for this phenomenon Is as follows. The path of 
integration used In Calculating the contour Integrals for the Inversion can 
be considered to consist of two parts: (a) the part passing through the 
saddle points, (b) the part encircling the slngularltlea, Method A approx- 
lmatea the contribution of part (a), but does not take into account the con- 
tribution of part (b). The latter contribution is leas Important for the 
more rapidly osclllatlng quantltlee (kp and 0'). 

In connection with conclusions (2) and (3), it la curious to note that, 
within the limits of the Klrchhoff theory, the Laplace transform inversion 
integrals may be rvaluated exactly for the present problem. 
method A results In the exact expression for 4’; 

For this case, 

imation for N’ even for small 
It gives a good approx- 

7 , but yields a practically applicable 
approximation for normal displacement only for very large T . 

The first author IS responsible for programing the calculations on the 
“Ulnak-2” electronic digital computer; 
the theoretical part of the study. 

the second author Is responsible for 
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